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Abstract
A class of shape-invariant bound-state problems which represent transitions in a
two-level system introduced earlier are generalized to include arbitrary energy
splittings between the two levels as well as intensity-dependent interactions.
We show that the coupled-channel Hamiltonians obtained correspond to the
generalizations of the nonresonant and intensity-dependent Jaynes–Cummings
Hamiltonians, widely used in quantized theories of lasers. In this general
context, we determine the eigenstates, eigenvalues, the time evolution matrix
and the population inversion matrix factor.

PACS numbers: 0365F, 0370, 0530, 1130P

1. Introduction

The integrability condition called shape invariance originates in supersymmetric quantum
mechanics [1, 2]. The separable positive-definite Hamiltonian Ĥ1 = Â†Â is called shape-
invariant if the condition

Â(a1)Â
†(a1) = Â†(a2)Â(a2) + R(a1) (1.1)

is satisfied [3]. In this equation a1 and a2 represent parameters of the Hamiltonian. The
parameter a2 is a function of a1 and the remainder R(a1) is independent of the dynamical
variables such as position and momentum. Even though not all exactly solvable problems are
shape invariant [4], shape invariance, especially in its algebraic formulation [5–7], has proven
to be a powerful technique to study exactly solvable systems.
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5 Permanent address: Department of Physics, University of Wisconsin, Madison, WI 53706, USA.

0305-4470/01/061109+19$30.00 © 2001 IOP Publishing Ltd Printed in the UK 1109



1110 A N F Aleixo et al

In a previous paper [8] we used shape invariance to calculate the energy eigenvalues and
eigenfunctions for the Hamiltonian

Ĥ = Â†Â + 1
2 [Â, Â†](σ̂3 + 1) +

√
h̄
(σ̂+Â + σ̂−Â†) (1.2)

where

σ̂± = 1
2 (σ̂1 ± iσ̂2) (1.3)

and σ̂i , with i = 1, 2, and 3, are the Pauli matrices.
This is a generalization of the Jaynes–Cummings Hamiltonian [9]. A different, but related,

problem was considered in [10]. Our goal in this paper is to study further generalizations of the
Jaynes–Cummings Hamiltonian, first by introducing a term proportional to σ3 with an arbitrary
coefficient (the so-called nonresonant limit) and then by taking into account the dependence of
the coupling on the intensity of the field (the so-called intensity-dependent nonresonant limit).
In addition to the energy levels we study the time evolution and the population inversion matrix
factor.

Introducing the similarity transformation that replaces a1 with a2 in a given operator

T̂ (a1) Ô(a1) T̂
†(a1) = Ô(a2) (1.4)

and the operators

B̂+ = Â†(a1)T̂ (a1) (1.5)

B̂− = B̂†
+ = T̂ †(a1)Â(a1) (1.6)

the condition of equation (1.1) can be written as a commutator [5]

[B̂−, B̂+] = T̂ †(a1)R(a1)T̂ (a1) ≡ R(a0) (1.7)

where we used the identity

R(an) = T̂ (a1) R(an−1) T̂
†(a1) (1.8)

valid for anyn. The ground state of the Hamiltonian Ĥ1 = Â†Â = B̂+B̂− satisfies the condition

Â |ψ0〉 = 0 = B̂− |ψ0〉 (1.9)

and the unnormalized nth excited state is given by

|ψn〉 ∼ (B̂+)
n|ψ0〉 (1.10)

with the eigenvalue

En =
n∑

k=1

R(ak). (1.11)

We note that the Hamiltonian of equation (1.2) can also be written as

Ĥ =
[
T̂ 0
0 ±1

]
ĥ±

[
T̂ † 0
0 ±1

]
(1.12)

where

ĥ± = B̂+B̂− + 1
2R(a0)(σ̂3 + 1) ±

√
h̄
 (σ̂+B̂− + σ̂−B̂+). (1.13)
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2. The generalized nonresonant Jaynes–Cummings Hamiltonian

The standard Jaynes–Cummings model, normally used in quantum optics, idealizes the
interaction of matter with electromagnetic radiation by a simple Hamiltonian of a two-level
atom coupled to a single bosonic mode [11–16]. This Hamiltonian has a fundamental
importance to the field of quantum optics and it is a central ingredient in the quantized
description of any optical system involving the interaction between light and atoms. The
Jaynes–Cummings Hamiltonian defines a molecule, a composite system formed from the
coupling of a two-state system and a quantized harmonic oscillator. In this case, its nonresonant
expression can be written as

Ĥ = Â†Â + 1
2 [Â, Â†](σ̂3 + 1) + α(σ̂+Â + σ̂−Â†) + h̄� σ̂3 (2.1)

where α is a constant related to the coupling strength and � is a constant related to the detuning
of the system.

However, the harmonic oscillator system, used in this context, is only the simplest
example of a supersymmetric and shape-invariant potential. Our goal here is to generalize
that Hamiltonian for all supersymmetric and shape-invariant systems. With this purpose and
following [8] we introduce the operator

Ŝ = σ̂+Â + σ̂−Â† (2.2)

where the operators Â and Â† satisfy the shape invariance condition of equation (1.1). Using
this definition we can decompose the nonresonant Jaynes–Cummings Hamiltonian in the form

Ĥ = Ĥo + Ĥint (2.3)

where

Ĥo = Ŝ2 (2.4a)

Ĥint = α Ŝ + h̄� σ̂3. (2.4b)

First, we search for the eigenstates of Ŝ2. In this case it is more convenient to work with its
B-operator expression, which can be written as [8]

Ŝ2 =
[
T̂ 0
0 ±1

] [
B̂−B̂+ 0

0 B̂+B̂−

] [
T̂ † 0
0 ±1

]
≡
[
Ĥ2 0
0 Ĥ1

]
(2.5)

where Ĥ2 = T̂ B̂−B̂+T̂
†. Note the freedom of sign choice in equation (2.5), which results in

two possible decompositions of Ŝ2. Next, we introduce the states

|�(±)〉 =
[
T̂ 0
0 ±1

] [
C(±)

m |m〉
C(±)

n |n〉
]

(2.6)

whereC(±)
m,n ≡ C(±)

m,n[R(a1), R(a2), R(a3), . . .] are auxiliary coefficients, and |m〉 and |n〉 are the
abbreviated notation for the states |ψm〉 and |ψn〉 of equation (1.10). Using equations (1.7), (2.5)
and (2.6), the commutation between Ĥ1 and a function of R(ak), and the T̂ -operator unitarity
condition, we get

Ŝ2|�(±)〉 =
[
T̂ 0
0 ±1

] [
B̂+B̂− + R(a0) 0

0 B̂+B̂−

] [
C(±)

m |m〉
C(±)

n |n〉
]

=
[
T̂ 0
0 ±1

] [ Em + R(a0) 0
0 En

] [
C(±)

m |m〉
C(±)

n |n〉
]
. (2.7)

Using equations (1.8) and (1.11) we can write

T̂ [Em + R(a0)] T̂
† = T̂ [R(a1) + R(a2) + · · · + R(am) + R(a0)] T̂

†

= R(a2) + R(a3) + · · · + R(am+1) + R(a1) = Em+1. (2.8)
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Hence the states

|�(±)
m 〉 =

[
T̂ 0
0 ±1

] [
C(±)

m |m〉
C

(±)
m+1|m + 1〉

]
m = 0, 1, 2, . . . (2.9)

are the normalized eigenstates of the operator Ŝ2:

Ŝ2|�(±)
m 〉 = Em+1|�(±)

m 〉. (2.10)

We observe that the orthonormality of the wavefunctions imply the following relations among
the C:

〈�(±)
m |�(±)

m 〉 = [
C(±)

m

]2
+
[
C

(±)
m+1

]2
= 1 (2.11a)

〈�(∓)
m |�(±)

m 〉 = C(±)
m C(∓)

m − C
(±)
m+1C

(∓)
m+1 = 0. (2.11b)

Since Ŝ2 and Ĥint commute then it is possible to find a common set of eigenstates. We can
use this fact to determine the eigenvalues of Ĥint and the relations among the C coefficients.
For that we need to calculate

Ĥint|�(±)
m 〉 = λ(±)

m |�(±)
m 〉 (2.12)

where λ(±)
m are the eigenvalues to be determined. Using equations (2.2), (2.4) and (2.9), the

last eigenvalue equation can be rewritten in a matrix form as

α

[
β T̂ B̂−

B̂+T̂
† −β

] [
T̂ 0
0 ±1

] [
C(±)

m |m〉
C

(±)
m+1|m + 1〉

]
= λ(±)

m

[
C(±)

m |m〉
C

(±)
m+1|m + 1〉

]
(2.13)

where β = h̄�/α. Since the C coefficients commute with the Â or Â† operators, then the last
matrix equation permits us to obtain the following equations:

[αβ − λ(±)
m ](T̂ C(±)

m T̂ †)T̂ |m〉 ± α C
(±)
m+1T̂ B̂−|m + 1〉 = 0 (2.14a)

α(T̂ C(±)
m T̂ †)B̂+|m〉 ∓ [αβ + λ(±)

m ]C(±)
m+1|m + 1〉 = 0. (2.14b)

Introducing the operator [7]

Q̂† = (B̂+B̂−)−1/2B̂+ (2.15)

one can write the normalized eigenstate of Ĥ1 as

|m〉 = (Q̂†)m|0〉 (2.16)

and with equations (2.15) and (2.16) we can show that [8]

B̂+|m〉 =
√

Em+1|m + 1〉 (2.17a)

T̂ B̂−|m + 1〉 =
√

Em+1 T̂ |m〉. (2.17b)

Substituting equations (2.17) into (2.14) we have

{[αβ − λ(±)
m ](T̂ C(±)

m T̂ †) ± α
√

Em+1 C
(±)
m+1}T̂ |m〉 = 0 (2.18a)

{α
√

Em+1(T̂ C(±)
m T̂ †) ∓ [αβ + λ(±)

m ]C(±)
m+1}|m + 1〉 = 0. (2.18b)

From equations (2.18) it follows that

λ(±)
m = ±α

√
Em+1 + β2 (2.19)

and

C
(±)
m+1 =

(√
Em+1 + β2 ∓ β√Em+1

)
(T̂ C(±)

m T̂ †). (2.20)
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Equations (2.11) and (2.20) imply that

C
(±)
m+1 = C(∓)

m (2.21)

and the eigenstates and eigenvalues of the generalized nonresonant Jaynes–Cummings
Hamiltonians can be written as

E(±)
m = Em+1 ±

√
α2 Em+1 + h̄2�2 (2.22)

and

|�(±)
m 〉 =

[
T̂ 0
0 ±1

] [
C(±)

m |m〉
C(∓)

m |m + 1〉
]

m = 0, 1, 2, . . . . (2.23)

2.1. The resonant limit

From these general results we can verify two important and simple limiting cases. The first
one corresponds to the resonant situation, for which � = 0 (β = 0). Using these conditions
in equations (2.11), (2.20) and (2.22) we get

E(±)
m = Em+1 ±

√
α2 Em+1 (2.24)

and

C
(±)
m+1 = T̂ C(±)

m T̂ † = C(±)
m = 1√

2
. (2.25)

Therefore the Jaynes–Cummings resonant eigenstate is given by

|�(±)
m 〉 = 1√

2

[
T̂ 0
0 ±1

] [ |m〉
|m + 1〉

]
m = 0, 1, 2, . . . . (2.26)

These particular results are shown in [8].

2.2. The standard Jaynes–Cummings limit

The second important limit corresponds to the standard Jaynes–Cummings Hamiltonian,
related to the harmonic oscillator system. In this limit we have that T̂ = T̂ † −→ 1,
B̂− −→ â, B̂+ −→ â†, � = ω − ωo and Em+1 = (m + 1)h̄ω. Using these conditions in
equations (2.11), (2.20) and (2.22) we conclude that

E(±)
m = (m + 1)h̄ω ±

√
α2h̄ω(m + 1) + h̄2(ω − ωo)2 (2.27)

and

C
(±)
m+1 = γ (±)

m C(±)
m = C(∓)

m = 1√
1 + (γ

(∓)
m )2

(2.28)

where

γ (±)
m =

√
1 + δ2

m ∓ δm (2.29a)

δm = h̄(ω − ωo)√
(m + 1)α2h̄ω

. (2.29b)

Therefore the standard Jaynes–Cummings eigenstate, written in a matrix form, is given by

|�(±)
m 〉 = 1√

1 + (γ
(±)
m )2

[
1 0
0 ±γ (±)

m

] [ |m〉
|m + 1〉

]
m = 0, 1, 2, . . . . (2.30)

These results are shown in many papers, in particular, in [17].
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3. The time evolution of the nonresonant system

To study the time-dependent Schrödinger equation for a Jaynes–Cummings system in a
nonresonant situation:

ih̄
∂

∂t
|�(t)〉 = (Ĥo + Ĥint)|�(t)〉 (3.1)

we can write the wavefunction as

|�(t)〉 = exp (−iĤot/h̄) |�i(t)〉 (3.2)

and, by substituting this into the Schrödinger equation and taking into account the commutation
property between Ĥo and Ĥint, we obtain

ih̄
∂

∂t
|�i(t)〉 = Ĥint |�i(t)〉. (3.3)

We introduce the evolution matrix Ûi (t, 0):

|�i(t)〉 = Ûi (t, 0) |�i(0)〉. (3.4)

which satisfies the equation

ih̄
∂

∂t
Ûi (t, 0) = Ĥint Ûi (t, 0) (3.5)

that is, in matrix form, written as

ih̄

[
Û ′

11 Û ′
12

Û ′
21 Û ′

22

]
= α

[
β T̂ B̂−

B̂+T̂
† −β

] [
Û11 Û12

Û21 Û22

]
(3.6)

where the primes denote the time derivative. One fast way to diagonalize the evolution matrix
differential equation is by differentiating equation (3.5) with respect to time. We find

ih̄
∂2

∂t2
Ûi (t, 0) = Ĥint

∂

∂t
Ûi (t, 0) = 1

ih̄
Ĥ2

intÛi (t, 0) (3.7)

which can be written as[
Û ′′

11 Û ′′
12

Û ′′
21 Û ′′

22

]
= −

[
ω̂1 0
0 ω̂2

] [
Û11 Û12

Û21 Û22

]
(3.8)

where

h̄ω̂1 = α

√
T̂ B̂−B̂+T̂ † + β2 =

√
α2 Ĥ2 + (h̄�)2 (3.9a)

h̄ω̂2 = α

√
B̂+B̂− + β2 =

√
α2 Ĥ1 + (h̄�)2. (3.9b)

Now, since by initial conditions Ûi (0, 0) = Î, then we can write the solution of the evolution
matrix differential equation (3.7) as

Ûi (t, 0) =
[

cos (ω̂1t) sin (ω̂1t) Ĉ

sin (ω̂2t) D̂ cos (ω̂2t)

]
(3.10)

and the Ĉ and D̂ operators can be determined by the unitarity conditions

Û †
i (t, 0) Ûi (t, 0) = Ûi (t, 0) Û †

i (t, 0) = Î. (3.11)

In appendix A we show that the unitarity conditions (3.11) imply

Ĉ = −D̂† = i

(Ĥ2)
1/4

√
T̂ B̂− (3.12a)

D̂ = −Ĉ†. (3.12b)
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Therefore, we can write the final expression of the time evolution matrix of the system as

Ûi (t, 0) =
[

cos (ω̂1t) sin (ω̂1t) Ĉ

− sin (ω̂2t) Ĉ
† cos (ω̂2t)

]
. (3.13)

For Jaynes–Cummings systems an important physical quantity to see how the system
under consideration evolves in time is the population inversion factor [11, 13, 15], defined by

Ŵ (t) ≡ σ̂+(t) σ̂−(t) − σ̂−(t) σ̂+(t) = σ̂3(t) (3.14)

where the time dependence of the operators is related to the Heisenberg picture. In this case,
the time evolution of the population inversion factor will be given by

dσ̂3 (t)

dt
= 1

ih̄
Û †

i (t, 0)[σ̂3, Ĥ]Ûi (t, 0) (3.15)

and since we have

[σ̂3, Ĥ] = α[σ̂3, Ŝ] = −2α Ŝ σ̂3 (3.16)

then equation (3.15) can be written as

dσ̂3 (t)

dt
= 2iα

h̄
Ŝ(t) σ̂3(t). (3.17)

We can obtain a differential equation with constant coefficients for σ̂3(t) by taking the time
derivative of equation (3.17):

d2σ̂3 (t)

dt2
= 2iα

h̄

{
dŜ (t)

dt
σ̂3(t) + Ŝ(t)

dσ̂3 (t)

dt

}
. (3.18)

Having in mind that

dŜ (t)

dt
= 1

ih̄
Û †

i (t, 0)[Ŝ, Ĥ]Ûi (t, 0) (3.19)

and that

[Ŝ, Ĥ] = αβ[Ŝ, σ̂3] = 2αβ Ŝ σ̂3 (3.20)

we conclude that

dŜ (t)

dt
= −2iαβ

h̄
Ŝ(t) σ̂3(t). (3.21)

Using equations (3.17) and (3.21) in (3.18) we obtain

d2σ̂3 (t)

dt2
+ Θ̂2 σ̂3(t) = F̂ (t) (3.22)

where

Θ̂2 = 4α2

h̄2 Ŝ2 (3.23a)

F̂ (t) = 4α2β

h̄2 Û †
i (t, 0) Ŝ Ûi (t, 0). (3.23b)

Equation (3.22) corresponds to a non-homogeneous linear differential equation for σ̂3(t)

with constant coefficients since Ŝ2 and Ĥ commute and, therefore, Θ̂ is a constant of the
motion. The general solution of this differential equation can be written as

σ̂3(t) = σ̂ H (t) + σ̂ P (t) (3.24)
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and each matrix element of the homogeneous solution satisfies the differential equation

d2σ̂ H
jk (t)

dt2
+ ν̂2

j σ̂
H
jk (t) = 0 j, k = 1, or 2 (3.25)

with

h̄ν̂1 = 2α
√
T̂ B̂−B̂+T̂ † = 2

√
α2 Ĥ2 (3.26a)

h̄ν̂2 = 2α
√
B̂+B̂− = 2

√
α2 Ĥ1. (3.26b)

The solution of equation (3.25) is given by

σ̂ H
jk (t) = ŷj (t) ĉjk + ẑj (t) d̂jk (3.27)

where

ŷj (t) = cos (ν̂j t) (3.28a)

ẑj (t) = sin (ν̂j t) (3.28b)

and the coefficients ĉjk and d̂jk can be determined by the initial conditions.
The matrix elements of the particular solution of the σ̂3(t) differential equation need to

satisfy

d2σ̂ P
jk (t)

dt2
+ ν̂2

j σ̂
P
jk(t) = F̂jk(t) j, k = 1, or 2 (3.29)

and they can be obtained by the variation of parameter or by Green function methods, giving

σ̂ P
jk(t) = ν̂−1

j

{
ẑj (t)

∫ t

0
dξ ŷj (ξ) F̂jk(ξ) − ŷj (t)

∫ t

0
dξ ẑj (ξ) F̂jk(ξ)

}
(3.30)

where we used that the Wronskian of the system of solutions ŷj (t) and ẑj (t) is given by ν̂j .
After we determine the elements of the F̂ (t) matrix, it is necessary to resolve the integrals

in equation (3.30) to obtain the explicit expression of the particular solution. In appendix B we
show that, using equations (2.2), (3.13) and (3.23), it is possible to conclude that these matrix
elements can be written as

σ̂ P
11(t) = i

γ

2
ν̂−1

1

√
T̂ B̂−{ẑ2(t)G(+)

CS (t; ν̂2, ω̂2, ω̂1) − ŷ2(t)G(+)
SS (t; ν̂2, ω̂2, ω̂1)}Ĥ 1/4

2

+i
γ

2
ν̂−1

1 Ĥ
1/4
2 {ẑ1(t)G(−)

SC (t; ν̂1, ω̂1, ω̂2) − ŷ1(t)G(−)
CC (t; ν̂1, ω̂1, ω̂2)}

√
B̂+T̂ †

(3.31a)

σ̂ P
12(t) = γ

2
ν̂−1

1

√
T̂ B̂−{ẑ2(t)G(+)

CC(t; ν̂2, ω̂2, ω̂1) − ŷ2(t)G(+)
SC (t; ν̂2, ω̂2, ω̂1)}

√
T̂ B̂−

+
γ

2
ν̂−1

1 Ĥ
1/4
2 {ẑ1(t)G(−)

SS (t; ν̂1, ω̂1, ω̂2) + ŷ1(t)G(−)
CS (t; ν̂1, ω̂1, ω̂2)}Ĥ 1/4

1 (3.31b)

σ̂ P
21(t) = γ

2
ν̂−1

2

√
B̂+T̂ †{ẑ1(t)G(+)

CC(t; ν̂1, ω̂1, ω̂2) − ŷ1(t)G(+)
SC (t; ν̂1, ω̂1, ω̂2)}

√
B̂+T̂ †

+
γ

2
ν̂−1

2 Ĥ
1/4
1 {ẑ2(t)G(−)

SS (t; ν̂2, ω̂2, ω̂1) − ŷ2(t)G(−)
CS (t; ν̂2, ω̂2, ω̂1)}Ĥ 1/4

2 (3.31c)

σ̂ P
22(t) = i

γ

2
ν̂−1

2

√
B̂+T̂ †{ẑ1(t)G(+)

CS (t; ν̂1, ω̂1, ω̂2) − ŷ1(t)G(+)
SS (t; ν̂1, ω̂1, ω̂2)}Ĥ 1/4

1

+i
γ

2
ν̂−1

2 Ĥ
1/4
1 {ẑ2(t)G(−)

SC (t; ν̂2, ω̂2, ω̂1) + ŷ2(t)G(−)
CC (t; ν̂2, ω̂2, ω̂1)}

√
T̂ B̂−

(3.31d)
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where γ = 4α2β/h̄2, and the auxiliary functions are given by

G(±)
XY (t; p̂, q̂, r̂) = FXY (t; p̂ − q̂, r̂) ± FXY (t; p̂ + q̂, r̂) X, Y = C or S (3.32)

with

FCC(t; x̂, ŵ) ≡
∫ t

0
dξ cos (x̂ξ) cos (ŵξ) =

∞∑
m,n=0

(−1)m+n x̂2mŵ2n

(2m)! (2n)!

t2m+2n+1

(2m + 2n + 1)

(3.33a)

FCS(t; x̂, ŵ) ≡
∫ t

0
dξ cos (x̂ξ) sin (ŵξ) =

∞∑
m,n=0

(−1)m+n x̂2mŵ2n+1

(2m)! (2n + 1)!

t2m+2n+2

(2m + 2n + 2)

(3.33b)

FSC(t; x̂, ŵ) ≡
∫ t

0
dξ sin (x̂ξ) cos (ŵξ) =

∞∑
m,n=0

(−1)m+n x̂2m+1ŵ2n

(2m + 1)! (2n)!

t2m+2n+2

(2m + 2n + 2)

(3.33c)

FSS(t; x̂, ŵ) ≡
∫ t

0
dξ sin (x̂ξ) sin (ŵξ) =

∞∑
m,n=0

(−1)m+n x̂2m+1ŵ2n+1

(2m + 1)! (2n + 1)!

t2m+2n+3

(2m + 2n + 3)
.

(3.33d)

With these results for the particular solution we can conclude that

σ̂ P
ij (0) = 0 = dσ̂ P

ij (0)

dt
. (3.34)

Now, using equations (3.17), (3.24), (3.27), (3.34) and the initial conditions, we have

[σ̂3(0)]ij = ĉij (3.35a)[
dσ̂3 (0)

dt

]
ij

= 2iα

h̄
[Ŝ(0) σ̂3(0)]ij = ν̂i d̂ij . (3.35b)

Therefore, the final expression for the elements of the population inversion matrix of the system
can be written as

[σ̂3(t)]ij = cos (ν̂i t) [σ̂3(0)]ij +
2iα

h̄
sin (ν̂i t) ν̂

−1
i [Ŝ(0) σ̂3(0)]ij + σ̂ P

ij (t). (3.36)

Again, using these final results we can verify two important and simple limit cases.

3.1. The resonant limit

The first one corresponds to the resonant situation (� = 0). Equations (3.9), (3.13), (3.26)
and (3.31) allow us to conclude that, in this case, the evolution matrix of the system is given
by

Ûi (t, 0) =
[

cos
(

1
2 ν̂1t

)
sin
(

1
2 ν̂1t

)
Ĉ

− sin
(

1
2 ν̂2t

)
Ĉ† cos

(
1
2 ν̂2t

) ] (3.37)

and the elements of the population inversion of the system are

[σ̂3(t)]ij = cos (ν̂i t) [σ̂3(0)]ij +
2iα

h̄
sin (ν̂i t) ν̂

−1
i [Ŝ(0) σ̂3(0)]ij . (3.38)
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3.2. The standard Jaynes–Cummings limit

This second important limit corresponds to the case of the harmonic oscillator system, and in
this limit we have that T̂ = T̂ † −→ 1, B̂− −→ â, B̂+ −→ â† and [â, â†] = h̄ω. With these
conditions the operators ω̂1 and ω̂2 commute, and this fact permits us to evaluate the integrals
related to the particular solution of the population inversion elements using trigonometric
product relations. Using that and the expressions obtained in appendix B, after a considerable
amount of algebra and trigonometric product relations we can show that it is possible to write
the expressions for the σ̂ P

ij (t) matrix elements as

σ̂ P
11(t) = i

γ

2
ν̂−1

1

√
â{KS(t; ω̂2, ω̂1, ν̂2) − KS(t; ω̂2,−ω̂1, ν̂2)}(ââ†)1/4

−i
γ

2
ν̂−1

1 (ââ†)1/4{KS(t; ω̂2, ω̂1, ν̂1) − KS(t; ω̂2,−ω̂1, ν̂1)}
√
â† (3.39a)

σ̂ P
12(t) = γ

2
ν̂−1

1

√
â{KC(t; ω̂2, ω̂1, ν̂2) − KC(t; ω̂2,−ω̂1, ν̂2)}

√
â

−γ

2
ν̂−1

1 (ââ†)1/4{KC(t; ω̂2, ω̂1, ν̂1) − KC(t; ω̂2,−ω̂1, ν̂1)}(â†â)1/4 (3.39b)

σ̂ P
21(t) = γ

2
ν̂−1

2

√
â†{KC(t; ω̂2, ω̂1, ν̂1) + KC(t; ω̂2,−ω̂1, ν̂1)}

√
â†

−γ

2
ν̂−1

2 (â†â)1/4{KC(t; ω̂2, ω̂1, ν̂2) − KC(t; ω̂2,−ω̂1, ν̂2)}(ââ†)1/4 (3.39c)

σ̂ P
22(t) = i

γ

2
ν̂−1

2

√
â†{KS(t; ω̂2, ω̂1, ν̂1) + KS(t; ω̂2,−ω̂1, ν̂1)}(â†â)1/4

−i
γ

2
ν̂−1

2 (â†â)1/4{KS(t; ω̂2, ω̂1, ν̂2) + KS(t; ω̂2,−ω̂1, ν̂2)}
√
â (3.39d)

where, now, the auxiliary functions are given by

KS(t; p̂, q̂, r̂) = r̂ sin [(p̂ + q̂)t] − (p̂ + q̂) sin (r̂t)

r̂2 − (p̂ + q̂)2
(3.40a)

KC(t; p̂, q̂, r̂) = r̂ cos [(p̂ + q̂)t] − r̂ cos (r̂t)

r̂2 − (p̂ + q̂)2
. (3.40b)

Considering the expressions above we may easily verify that the particular solution for the
population inversion factor must still satisfy the initial conditions (3.34). Therefore, in this
case the final expression for the population inversion factor has the same form given by
equation (3.36), with

h̄ν̂1 = 2α
√
ââ† h̄ν̂2 = 2α

√
â†â (3.41a)

h̄ω̂1 = α
√
ââ† + β2 h̄ω̂2 = α

√
â†â + β2. (3.41b)

4. The generalized intensity-dependent nonresonant Jaynes–Cummings Hamiltonian

A variant of the Jaynes–Cummings model takes the coupling between matter and the radiation
to depend on the intensity of the electromagnetic field [13, 15, 16, 18]. This model has great
relevance since this kind of interaction means effectively that the coupling is proportional to
the amplitude of the field, which is a very simple case of a nonlinear interaction corresponding
to a more realistic physical situation. The results of this model can also give insight into
the behaviour of other quantum systems with strong nonlinear interactions. In this section
we generalize the standard intensity-dependent nonresonant Jaynes–Cummings model to a
shape-invariant one.
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The expression for the intensity-dependent nonresonant Jaynes–Cummings Hamiltonian
can be written as

Ĥ = Â†Â + 1
2 [Â, Â†](σ̂3 + 1) + α

(
σ̂+Â

√
Â†Â + σ̂−

√
Â†Â Â†

)
+ h̄� σ̂3. (4.1)

Note that here the constant α is dimensionless. To generalize the Hamiltonian (4.1) for
all supersymmetric and shape-invariant systems, we can use the operator Ŝ, given by
equation (2.2), and further introduce the operator

Ŝi = σ̂+Â

√
Â†Â + σ̂−

√
Â†Â Â†. (4.2)

Again, the operators Â and Â† satisfy the shape invariance condition, equation (1.1). Using
operators Ŝ and Ŝi we can decompose the Jaynes–Cummings Hamiltonian of equation (4.1)
in the form

Ĥ = Ĥo + Ĥint (4.3)

where

Ĥo = Ŝ2 (4.4a)

Ĥint = α Ŝi + h̄� σ̂3. (4.4b)

In this case, Ĥint can be written as

Ĥint = α

[
β T̂ B̂−

√
B̂+B̂−√

B̂+B̂− B̂+T̂
† −β

]
= α

[
β T̂ B̂−

√
Ĥ1√

Ĥ1 B̂+T̂
† −β

]
. (4.5)

Here we can follow the same development as in section 2, with the same notation. Hence,
using equations (2.2), (2.9), (4.2) and (4.4), the eigenvalue equation

Ĥint|�(±)
m 〉 = λ(±)

m |�(±)
m 〉 (4.6)

can be written in matrix form as

α

[
β T̂ B̂−

√
Ĥ1√

Ĥ1B̂+T̂
† −β

][
T̂ 0
0 ±1

] [
C(±)

m |m〉
C

(±)
m+1|m + 1〉

]
= λ(±)

m

[
C(±)

m |m〉
C

(±)
m+1|m + 1〉

]
. (4.7)

Again, since the C coefficients commute with the Â or Â† operators, then the last matrix
equation permits us to obtain the following equations:

[αβ − λ(±)
m ](T̂ C(±)

m T̂ †)T̂ |m〉 ± α C
(±)
m+1T̂ B̂−

√
Ĥ1|m + 1〉 = 0 (4.8a)

α(T̂ C(±)
m T̂ †)

√
Ĥ1 B̂+|m〉 ∓ [αβ + λ(±)

m ]C(±)
m+1|m + 1〉 = 0. (4.8b)

Now, using equations (2.15)–(2.17) we have

T̂ B̂−
√
Ĥ1|m + 1〉 = T̂ B̂−

√
Em+1|m + 1〉

=
√

Em+1 T̂ B̂−|m + 1〉
= Em+1 T̂ |m〉 (4.9)

and √
Ĥ1 B̂+|m〉 =

√
Ĥ1

√
Em+1|m + 1〉

=
√

Em+1

√
Ĥ1|m + 1〉

= Em+1|m + 1〉. (4.10)
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Using equations (4.9) and (4.10), then equations (4.8) take the form

{[αβ − λ(±)
m ](T̂ C(±)

m T̂ †) ± α Em+1 C
(±)
m+1}T̂ |m〉 = 0 (4.11a)

{α Em+1(T̂ C(±)
m T̂ †) ∓ [αβ + λ(±)

m ]C(±)
m+1}|m + 1〉 = 0. (4.11b)

From equations (4.11) it follows that

λ(±)
m = ±α

√
E2
m+1 + β2 (4.12)

and

C
(±)
m+1 =



√

E2
m+1 + β2 ∓ β

Em+1


 (T̂ C(±)

m T̂ †). (4.13)

Equations (2.11) and (4.13) imply that

C
(±)
m+1 = C(∓)

m (4.14)

and the eigenstates and eigenvalues of the generalized intensity-dependent nonresonant Jaynes–
Cummings Hamiltonian can be written as

E(±)
m = Em+1 ±

√
α2 E2

m+1 + h̄2�2 (4.15)

and

|�(±)
m 〉 =

[
T̂ 0
0 ±1

] [
C(±)

m |m〉
C(∓)

m |m + 1〉
]

m = 0, 1, 2, . . . . (4.16)

4.1. The intensity-dependent resonant limit

From these general results we can again verify the two simple limiting cases. The first one,
corresponding to the resonant situation, is for � = 0 (β = 0). Using these conditions in
equations (2.11), (4.13) and (4.15) we can promptly conclude that

E(±)
m = (1 ± α) Em+1 (4.17)

and

C
(±)
m+1 = T̂ C(±)

m T̂ † = C(±)
m = 1√

2
. (4.18)

Therefore the intensity-dependent resonant Jaynes–Cummings eigenstate is given by

|�(±)
m 〉 = 1√

2

[
T̂ 0
0 ±1

] [ |m〉
|m + 1〉

]
m = 0, 1, 2, . . . . (4.19)

If we compare this last particular result with that found in [8], we conclude that the intensity-
dependent and intensity-independent generalized Jaynes–Cummings Hamiltonians have the
same eigenstates in the resonant situation.

4.2. The standard intensity-dependent Jaynes–Cummings limit

The second limit, corresponding to the standard intensity-dependent Jaynes–Cummings case,
is related to the harmonic oscillator system. In this limit we have that T̂ = T̂ † −→ 1,
B̂− −→ â, B̂+ −→ â†, � = ω − ωo and Em+1 = (m + 1)h̄ω. Using these conditions in
equations (2.11), (4.13) and (4.15) we can promptly conclude that

E(±)
m = (m + 1)h̄ω ± h̄

√
α2ω2(m + 1)2 + (ω − ωo)2 (4.20)
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and

C
(±)
m+1 = γ (±)

m C(±)
m = C(∓)

m = 1√
1 + (γ

(∓)
m )2

(4.21)

where

γ (±)
m =

√
1 + δ2

m ∓ δm (4.22a)

δm = ω − ωo

αω(m + 1)
. (4.22b)

Therefore the standard intensity-dependent Jaynes–Cummings eigenstate, written in a matrix
form, is given by

|�(±)
m 〉 = 1√

1 + (γ
(±)
m )2

[
1 0
0 ±γ (±)

m

] [ |m〉
|m + 1〉

]
m = 0, 1, 2, . . . . (4.23)

5. Time evolution of the intensity-dependent nonresonant system

To resolve the time-dependent Schrödinger equation for intensity-dependent nonresonant
Jaynes–Cummings systems:

ih̄
∂

∂t
|�(t)〉 = (Ĥo + Ĥint)|�(t)〉 (5.1)

we can again write the state |�(t)〉 as it is given by equation (3.2). Then using equations (3.3)–
(3.5), we can write the matrix equation

ih̄

[
Û ′

11 Û ′
12

Û ′
21 Û ′

22

]
= α

[
β T̂ B̂−

√
Ĥ1√

Ĥ1 B̂+T̂
† −β

][
Û11 Û12

Û21 Û22

]
. (5.2)

To diagonalize this evolution matrix differential equation we can differentiate equation (3.5)
with respect to time. After that, using equation (3.5), we find

ih̄
∂2

∂t2
Ûi (t, 0) = Ĥint

∂

∂t
Ûi (t, 0) = 1

ih̄
Ĥ2

intÛi (t, 0) (5.3)

which can be written as[
Û ′′

11 Û ′′
12

Û ′′
21 Û ′′

22

]
= −

[
ω̂1 0
0 ω̂2

] [
Û11 Û12

Û21 Û22

]
(5.4)

where

h̄ω̂1 = α

√
(T̂ B̂−B̂+T̂ †)2 + β2 =

√
α2 Ĥ 2

2 + (h̄�)2 (5.5a)

h̄ω̂2 = α

√
(B̂+B̂−)2 + β2 =

√
α2 Ĥ 2

1 + (h̄�)2. (5.5b)

Now, using the initial conditions Ûi (0, 0) = Î, we can write the solution of the evolution
matrix differential equation (5.3) as

Ûi (t, 0) =
[

cos (ω̂1t) sin (ω̂1t) Ĉ

sin (ω̂2t) D̂ cos (ω̂2t)

]
(5.6)

where the Ĉ and D̂ operators can be determined by equation (3.11). Following the same
steps used in appendix A, we can conclude that these operators must have the form given by
equations (3.12). So, in this case the final expression of the time evolution matrix Ûi (t, 0) is
given by equation (3.13) as well.
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To obtain the population inversion factor we can again follow the steps from equation (3.14)
to (3.30), but replacing the operator Ŝ by the operator Ŝi . Besides that we have

h̄ν̂1 = 2α T̂ B̂−B̂+T̂
† = 2α Ĥ2 (5.7a)

h̄ν̂2 = 2α B̂+B̂− = 2α Ĥ1 (5.7b)

instead of equations (3.26). Here, we can again use the development shown in appendix B,
just replacing Ŝ by Ŝi , to obtain the explicit form of the matrix elements for the particular
solution of the population inversion factor, given by equation (3.30). So for a shape-invariant
intensity-dependent nonresonant Jaynes–Cummings system, these matrix elements are given
by

σ̂ P
11(t) = i

γ

2
ν̂−1

1

√
T̂ B̂−{ẑ2(t)G(+)

CS (t; ν̂2, ω̂2, ω̂1) − ŷ2(t)G(+)
SS (t; ν̂2, ω̂2, ω̂1)}Ĥ 3/4

2

+i
γ

2
ν̂−1

1 Ĥ
3/4
2 {ẑ1(t)G(−)

SC (t; ν̂1, ω̂1, ω̂2) − ŷ1(t)G(−)
CC (t; ν̂1, ω̂1, ω̂2)}

√
B̂+T̂ †

(5.8a)

σ̂ P
12(t) = γ

2
ν̂−1

1

√
T̂ B̂−{ẑ2(t)G(+)

CC(t; ν̂2, ω̂2, ω̂1) − ŷ2(t)G(+)
SC (t; ν̂2, ω̂2, ω̂1)}

√
Ĥ2T̂ B̂−

+
γ

2
ν̂−1

1 Ĥ
3/4
2 {ẑ1(t)G(−)

SS (t; ν̂1, ω̂1, ω̂2) + ŷ1(t)G(−)
CS (t; ν̂1, ω̂1, ω̂2)}Ĥ 1/4

1 (5.8b)

σ̂ P
21(t) = γ

2
ν̂−1

2

√
B̂+T̂ †Ĥ2{ẑ1(t)G(+)

CC(t; ν̂1, ω̂1, ω̂2) − ŷ1(t)G(+)
SC (t; ν̂1, ω̂1, ω̂2)}

√
B̂+T̂ †

+
γ

2
ν̂−1

2 Ĥ
1/4
1 {ẑ2(t)G(−)

SS (t; ν̂2, ω̂2, ω̂1) − ŷ2(t)G(−)
CS (t; ν̂2, ω̂2, ω̂1)}Ĥ 3/4

2 (5.8c)

σ̂ P
22(t) = i

γ

2
ν̂−1

2

√
B̂+T̂ †Ĥ2{ẑ1(t)G(+)

CS (t; ν̂1, ω̂1, ω̂2) − ŷ1(t)G(+)
SS (t; ν̂1, ω̂1, ω̂2)}Ĥ 1/4

1

+i
γ

2
ν̂−1

2 Ĥ
1/4
1 {ẑ2(t)G(−)

SC (t; ν̂2, ω̂2, ω̂1) + ŷ2(t)G(−)
CC (t; ν̂2, ω̂2, ω̂1)}

√
Ĥ2T̂ B̂−.

(5.8d)

The auxiliary functions, G(±)
XY (t; p̂, q̂, r̂), are given by equations (3.32) and (3.33). From

equations (3.34) and (3.35), we have for the elements of the population inversion matrix:

[σ̂3(t)]ij = cos (ν̂i t) [σ̂3(0)]ij +
2iα

h̄
sin (ν̂i t) ν̂

−1
i [Ŝi (0) σ̂3(0)]ij + σ̂ P

ij (t). (5.9)

5.1. The intensity-dependent resonant limit

In this limit we set (� = 0), so the evolution matrix of the system is given by

Ûi (t, 0) =
[

cos
(

1
2 ν̂1t

)
sin
(

1
2 ν̂1t

)
Ĉ

− sin
(

1
2 ν̂2t

)
Ĉ† cos

(
1
2 ν̂2t

) ] (5.10)

and the elements of the population inversion factor can be written as

[σ̂3(t)]ij = cos (ν̂i t) [σ̂3(0)]ij +
2iα

h̄
sin (ν̂i t) ν̂

−1
i [Ŝi (0) σ̂3(0)]ij . (5.11)

5.2. The standard intensity-dependent Jaynes–Cummings limit

For the case of a harmonic oscillator system (T̂ = T̂ † −→ 1, B̂− −→ â, B̂+ −→ â† and
[â, â†] = h̄ω), we have for the σ̂ P

ij (t) matrix elements the following expressions:

σ̂ P
11(t) = i

γ

2
ν̂−1

1

√
â{KS(t; ω̂2, ω̂1, ν̂2) − KS(t; ω̂2,−ω̂1, ν̂2)}(ââ†)3/4
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−i
γ

2
ν̂−1

1 (ââ†)3/4{KS(t; ω̂2, ω̂1, ν̂1) − KS(t; ω̂2,−ω̂1, ν̂1)}
√
â† (5.12a)

σ̂ P
12(t) = γ

2
ν̂−1

1

√
â{KC(t; ω̂2, ω̂1, ν̂2) − KC(t; ω̂2,−ω̂1, ν̂2)}

√
ââ†â

−γ

2
ν̂−1

1 (ââ†)3/4{KC(t; ω̂2, ω̂1, ν̂1) − KC(t; ω̂2,−ω̂1, ν̂1)}(â†â)1/4 (5.12b)

σ̂ P
21(t) = γ

2
ν̂−1

2

√
â†ââ†{KC(t; ω̂2, ω̂1, ν̂1) + KC(t; ω̂2,−ω̂1, ν̂1)}

√
â†

−γ

2
ν̂−1

2 (â†â)1/4{KC(t; ω̂2, ω̂1, ν̂2) − KC(t; ω̂2,−ω̂1, ν̂2)}(ââ†)3/4 (5.12c)

σ̂ P
22(t) = i

γ

2
ν̂−1

2

√
â†ââ†{KS(t; ω̂2, ω̂1, ν̂1) + KS(t; ω̂2,−ω̂1, ν̂1)}(â†â)1/4

−i
γ

2
ν̂−1

2 (â†â)1/4{KS(t; ω̂2, ω̂1, ν̂2) + KS(t; ω̂2,−ω̂1, ν̂2)}
√
ââ†â (5.12d)

where the auxiliary functions, KS(t; p̂, q̂, r̂) and KC(t; p̂, q̂, r̂), are given by equations (3.40).
The final expression for the population inversion factor has the same form given by
equation (5.9), with

h̄ν̂1 = 2α ââ† h̄ν̂2 = 2α â†â (5.13a)

h̄ω̂1 = α
√
(ââ†)2 + β2 h̄ω̂2 = α

√
(â†â)2 + β2. (5.13b)

6. Conclusions

In this paper we extended our earlier work [8] on bound-state problems which represent two-
level systems. The corresponding coupled-channel Hamiltonians generalize the nonresonant
and intensity-dependent nonresonant Jaynes–Cummings Hamiltonians. In the case of a
nonresonant system, if we take the starting Hamiltonian to be the simplest shape-invariant
system, namely the harmonic oscillator, our results reduce to those of the standard nonresonant
Jaynes–Cummings approach, which has been extensively used to model a two-level atom
single-field mode interaction whose detuning is not null. In addition we have studied time
evolution and population inversion factors of both kinds of generalized systems.

These models are not only interesting on their own account. Being exactly solvable
coupled-channels problems they may help to assess the validity and accuracy of various
approximate approaches to the coupled-channel problems [19].
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Appendix A

Here we give the steps used to obtain the specific form of the operators Ĉ and D̂. Using
equation (3.10) in the unitary condition equation (3.11) we can show that the Ĉ and D̂ operators
need to satisfy the following six conditions:

ĈĈ† = Ĉ†Ĉ = 1 (A.1a)

D̂D̂† = D̂†D̂ = 1 (A.1b)

D̂† sin (ω̂2t) = − sin (ω̂1t) Ĉ (A.1c)

D̂ cos (ω̂1t) = − cos (ω̂2t) Ĉ
†. (A.1d)

At this point we can use the following property:√
T̂ B̂− ω̂2 =

√
T̂ B̂−

√
α2B̂+B̂− + β2/h̄

=
√
α2T̂ B̂−B̂+B̂− + T̂ B̂−β2/h̄

=
√
α2T̂ B̂−B̂+T̂ †T̂ B̂− + β2T̂ B̂−/ hbar

=
√
α2T̂ B̂−B̂+T̂ † + β2/h̄

√
T̂ B̂−

= ω̂1

√
T̂ B̂−. (A.2)

Then, with this result we have√
T̂ B̂− ω̂2

2 =
√
T̂ B̂− ω̂2 ω̂2 = ω̂1

√
T̂ B̂− ω̂2 = ω̂2

1

√
T̂ B̂− (A.3)

and finally, by induction, we conclude that√
T̂ B̂− ω̂n

2 = ω̂n
1

√
T̂ B̂−. (A.4)

In the same way,√
B̂+T̂ † ω̂1 =

√
B̂+T̂ †

√
α2T̂ B̂−B̂+T̂ † + β2/h̄

=
√
α2B̂+T̂ †T̂ B̂−B̂+T̂ † + B̂+T̂ †β2/h̄

=
√
α2B̂+B̂−B̂+T̂ † + β2B̂+T̂ †/h̄

=
√
α2B̂+B̂− + β2/h̄

√
B̂+T̂ †

= ω̂2

√
B̂+T̂ †. (A.5)

Then, with this result we have√
B̂+T̂ † ω̂2

1 =
√
B̂+T̂ † ω̂1 ω̂1 = ω̂2

√
B̂+T̂ † ω̂1 = ω̂2

2

√
B̂+T̂ † (A.6)

and finally, again by induction, we get√
B̂+T̂ † ω̂n

1 = ω̂n
2

√
B̂+T̂ †. (A.7)

Using the properties given by equations (A.4) and (A.7) and the forms of the Ĉ and D̂ operators,
defined by equations (3.12), we can verify that

ĈĈ† = D̂†D̂ = i

Ĥ
1/4
2

√
T̂ B̂−

√
B̂+T̂ †

(−i)

Ĥ
1/4
2

= 1

Ĥ
1/4
2

√
Ĥ2

1

Ĥ
1/4
2

= 1 (A.8)
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and

Ĉ†Ĉ = D̂D̂† =
√
B̂+T̂ †

(−i)

Ĥ
1/4
2

i

Ĥ
1/4
2

√
T̂ B̂− =

√
B̂+T̂ †

1√
Ĥ2

√
Ĥ2

1√
B̂+T̂ †

= 1. (A.9)

Also, using the series expansion of the trigonometric functions, we can show that

D̂† sin (ω̂2t) = −i

Ĥ
1/4
2

√
T̂ B̂−

∞∑
n=0

(−1)n
(ω̂2t)

2n+1

(2n + 1)!

= −i

Ĥ
1/4
2

∞∑
n=0

(−1)n
√
T̂ B̂−

(ω̂2t)
2n+1

(2n + 1)!

= −i

Ĥ
1/4
2

∞∑
n=0

(−1)n
(ω̂1t)

2n+1

(2n + 1)!

√
T̂ B̂−

=
∞∑
n=0

(−1)n
(ω̂1t)

2n+1

(2n + 1)!

−i

Ĥ
1/4
2

√
T̂ B̂−

= − sin (ω̂1t) Ĉ (A.10)

where we used the commutation between Ĥ2 and ω̂1 (see appendix B). In the same way we
can prove that

D̂ cos (ω̂1t) =
√
B̂+T̂ †

i

Ĥ
1/4
2

∞∑
n=0

(−1)n
(ω̂1t)

2n

(2n)!

=
∞∑
n=0

(−1)n
√
B̂+T̂ †

(ω̂1t)
2n

(2n)!

i

Ĥ
1/4
2

=
∞∑
n=0

(−1)n
(ω̂2t)

2n

(2n)!

√
B̂+T̂ †

i

Ĥ
1/4
2

= − cos (ω̂2t) Ĉ
†. (A.11)

Again, we used the commutation between Ĥ2 and ω̂1.

Appendix B

In this appendix we show the necessary steps to obtain the explicit expressions of the
particular solution elements of the population inversion factor. To resolve the integrals in
equation (3.30), first we need to determine the elements of the F̂ (t) matrix. To do that we can
use equations (2.2), (3.13) and (3.23) to write down

F̂11(t) = −γ {cos (ω̂1t) T̂ B̂− sin (ω̂2t) Ĉ
† + Ĉ sin (ω̂2t) B̂+T̂

† cos (ω̂1t)}
= iγ

{√
T̂ B̂− cos (ω̂2t) sin (ω̂1t) Ĥ

1/4
2 − Ĥ

1/4
2 sin (ω̂1t) cos (ω̂2t)

√
B̂+T̂ †

}
(B.1a)

F̂12(t) = γ {cos (ω̂1t) T̂ B̂− cos (ω̂2t) − Ĉ sin (ω̂2t) B̂+T̂
† sin (ω̂1t) Ĉ}

= γ

{√
T̂ B̂− cos (ω̂2t) cos (ω̂1t)

√
T̂ B̂− + Ĥ

1/4
2 sin (ω̂1t) sin (ω̂2t) Ĥ

1/4
1

}
(B.1b)
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F̂21(t) = γ {cos (ω̂2t) B̂+T̂
† cos (ω̂1t) − Ĉ† sin (ω̂1t) T̂ B̂− sin (ω̂2t) Ĉ

†}
= γ

{√
B̂+T̂ † cos (ω̂1t) cos (ω̂2t)

√
B̂+T̂ †+Ĥ 1/4

1 sin (ω̂2t) sin (ω̂1t) Ĥ
1/4
2

}
(B.1c)

F̂22(t) = γ {Ĉ† sin (ω̂1t) T̂ B̂− cos (ω̂2t) + cos (ω̂2t) B̂+T̂
† sin (ω̂1t) Ĉ}

= iγ

{√
B̂+T̂ † cos (ω̂1t) sin (ω̂2t) Ĥ

1/4
1 − Ĥ

1/4
1 sin (ω̂2t) cos (ω̂1t)

√
T̂ B̂−

}
(B.1d)

where γ = 4α2β/h̄2. Here we used the properties (A.1), (A.4) and (A.7), together with the
following operators relations:

Ĉ

√
B̂+T̂ † = −

√
T̂ B̂− Ĉ† = iĤ 1/4

2 (B.2a)√
B̂+T̂ † Ĉ = −Ĉ†

√
T̂ B̂− = iĤ 1/4

1 . (B.2b)

Now, keeping in mind that [ν̂j , ω̂j ] = 0, (j = 1, or 2), we may use the trigonometric
relationships involving products of trigonometric functions with arguments ν̂j t and ω̂j t (since
we have exp (ν̂j t) exp (±ω̂j t) = exp [(ν̂j ± ω̂j )t]). Then, using those relationships, the
following commutators:

[ν̂1, Ĥ2] = [ω̂1, Ĥ2] = [ν̂2, Ĥ1] = [ω̂2, Ĥ1] = 0 (B.3)

and the same properties (1), (A.4) and (A.7), we can show that

ŷ1(t) F̂11(t) = i
γ

2

√
T̂ B̂−{cos [(ν̂2 − ω̂2)t] sin (ω̂1t) + cos [(ν̂2 + ω̂2)t] sin (ω̂1t)}Ĥ 1/4

2

+i
γ

2
Ĥ

1/4
2 {sin [(ν̂1 − ω̂1)t] cos (ω̂2t) − sin [(ν̂1 + ω̂1)t] cos (ω̂2t)}

√
B̂+T̂ †

(A.4a)

ŷ1(t) F̂12(t) = γ

2

√
T̂ B̂−{cos [(ν̂2 − ω̂2)t] cos (ω̂1t) + cos [(ν̂2 + ω̂2)t] cos (ω̂1t)}

√
T̂ B̂−

+
γ

2
Ĥ

1/4
2 {sin [(ν̂1 + ω̂1)t] sin (ω̂2t) − sin [(ν̂1 − ω̂1)t] sin (ω̂2t)}Ĥ 1/4

1 (A.4b)

ŷ2(t) F̂21(t) = γ

2

√
B̂+T̂ †{cos [(ν̂1 − ω̂1)t] cos (ω̂2t) + cos [(ν̂1 + ω̂1)t] cos (ω̂2t)}

√
B̂+T̂ †

+
γ

2
Ĥ

1/4
1 {sin [(ν̂2 + ω̂2)t] sin (ω̂1t) − sin [(ν̂2 − ω̂2)t] sin (ω̂1t)}Ĥ 1/4

2 (A.4c)

ŷ2(t) F̂22(t) = i
γ

2

√
B̂+T̂ †{cos [(ν̂1 − ω̂1)t] sin (ω̂2t) + cos [(ν̂1 + ω̂1)t] sin (ω̂2t)}Ĥ 1/4

1

+i
γ

2
Ĥ

1/4
1 {sin [(ν̂2 − ω̂2)t] cos (ω̂1t) − sin [(ν̂2 + ω̂2)t] cos (ω̂1t)}

√
T̂ B̂−.

(A.4d)

In a similar way, we can show that

ẑ1(t) F̂11(t) = i
γ

2

√
T̂ B̂−{sin [(ν̂2 − ω̂2)t] sin (ω̂1t) + sin [(ν̂2 + ω̂2)t] sin (ω̂1t)}Ĥ 1/4

2

−i
γ

2
Ĥ

1/4
2 {cos [(ν̂1 − ω̂1)t] cos (ω̂2t) − cos [(ν̂1 + ω̂1)t] cos (ω̂2t)}

√
B̂+T̂ †

(B.5a)
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ẑ1(t) F̂12(t) = γ

2

√
T̂ B̂−{sin [(ν̂2 − ω̂2)t] cos (ω̂1t) + sin [(ν̂2 + ω̂2)t] cos (ω̂1t)}

√
T̂ B̂−

−γ

2
Ĥ

1/4
2 {cos [(ν̂1 + ω̂1)t] sin (ω̂2t) − cos [(ν̂1 − ω̂1)t] sin (ω̂2t)}Ĥ 1/4

1 (B.5b)

ẑ2(t) F̂21(t) = γ

2

√
B̂+T̂ †{sin [(ν̂1 − ω̂1)t] cos (ω̂2t) + sin [(ν̂1 + ω̂1)t] cos (ω̂2t)}

√
B̂+T̂ †

−γ

2
Ĥ

1/4
1 {cos [(ν̂2 + ω̂2)t] sin (ω̂1t) − cos [(ν̂2 − ω̂2)t] sin (ω̂1t)}Ĥ 1/4

2 (B.5c)

ẑ2(t) F̂22(t) = i
γ

2

√
B̂+T̂ †{sin [(ν̂1 − ω̂1)t] sin (ω̂2t) + sin [(ν̂1 + ω̂1)t] sin (ω̂2t)}Ĥ 1/4

1

−i
γ

2
Ĥ

1/4
1 {cos [(ν̂2 − ω̂2)t] cos (ω̂1t) − cos [(ν̂2 + ω̂2)t] cos (ω̂1t)}

√
T̂ B̂−.

(B.5d)

The non-commutativity between the operators ω̂1 and ω̂2 implies that to calculate the
integrals involving the terms given by equations (B.4) and (B.5) we need to use the series
expansion of the trigonometric functions. In this case the integrals can be easily done because
the time variable can be considered as a parameter factor. Finally, using these results in
equation (3.30) is trivial to find the expression (3.31) for the matrix elements of the particular
solution.
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